дробно-линейная группа


дробно-линейная группа
linear fractional group

Русско-английский математический словарь. 2013.

Смотреть что такое "дробно-линейная группа" в других словарях:

  • Группа Мебиуса — Дробно линейная функция функция вида где z = (z1,...,zn) комплексные или вещественные переменные, ai,b,ci,d комплексные или вещественные коэффициенты. Часто термин «дробно линейная функция» используется для её частного случая преобразования… …   Википедия

  • Преобразование Мёбиуса — Вид преобразований на комплексной плоскости (серая) и сфере Римана (чёрная) Не следует путать с обращением Мёбиуса. Преобразование Мёбиуса  дробно линейная функция одного комплексного переменного, тождественно не равная константе …   Википедия

  • Преобразование —         одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… …   Большая советская энциклопедия

  • Проективное преобразование —         взаимно однозначное отображение проективной плоскости (См. Проективная плоскость) или проективного пространства (См. Проективное пространство) в себя, при котором точки, лежащие на прямой, переходят в точки, также лежащие на прямой… …   Большая советская энциклопедия

  • Преобразования Лоренца — Преобразования Лоренца  линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющее длины или, что эквивалентно, скалярное произведение векторов. Преобразования Лоренца… …   Википедия

  • Вывод преобразований Лоренца — может быть проделан многими способами, исходя из различных предпосылок. Преобразования Лоренца могут быть получены абстрактно, из групповых соображений (в этом случае они получаются с неопределённым ), как обобщение преобразований Галилея (что… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.